Exercices supplémentaires : limites et continuité

Exercice 1

Déterminer la limite, si elle existe, de :

$$1/\frac{x^2+1}{x-1}$$
 en 1.

$$2/\ln(x) + \frac{1}{x^2}$$
 en 0.

$$3/x\left|\frac{1}{x}\right|$$
 en 0.

$$4/\frac{x^2-|x|}{x^2+|x|}$$
 en 0 et en $+\infty$.

5/
$$\frac{\sqrt{2-x}-\sqrt{2+x}}{x}$$
 en 0 (penser à la quantité conjuguée).

6/
$$\frac{x^3-2x+1}{x^3-4x+3}$$
 en 1 (factoriser numérateur et dénominateur par $(x-...)$).

7/
$$\frac{\ln(x)}{x^2-1}$$
 en 1 (faire apparaı̂tre une limite du chapitre précédent).

8/
$$\arctan\left(\sqrt{1+\ln(x)}\right)$$
 en $+\infty$.

$$9/x\sin\left(\frac{1}{x}\right)$$
 en 0.

10/
$$x^x$$
 en 0.

Exercice 2

Déterminer un équivalent puis la limite de :

$$1/4x^4 - 3x^2 + 5x$$
 en 0 et en $+\infty$.

$$2/\frac{1}{x} - \frac{1}{x^2} + \frac{1}{x^3}$$
 en 0 et en $+\infty$.

$$3/\frac{e^x-1}{\sin^3(x)}(\cos(x)-1)$$
 en 0.

$$4/\frac{\sin(6x)}{e^{\frac{x}{3}}-1}$$
 en 0.

$$5/(1+\tan(x))^{\frac{1}{\sin(x)}}$$
 en 0 (passer à l'écriture exponentielle).

$$6/ \frac{\ln(\cos x)}{1 - \cos(2x)} \text{ en } 0.$$

$$7/\left(x+\frac{1}{x}\right)^x$$
 en $+\infty$ (passer à l'écriture exponentielle).

8/
$$x \ln(x^2+1) - 2x \ln(x)$$
 en $+\infty$ (factoriser à l'intérieur du logarithme de x^2+1).

$$9/\frac{\ln(3^x - 2^x)}{x}$$
 en $+\infty$.

10/
$$e^{\tan(x)-\sin(x)}$$
 en 0.

11/
$$2x - \sqrt{4x^2 - x + 1}$$
 en $+\infty$.

12/
$$\frac{\sqrt{x^2+x+1}-\sqrt{x^2+1}}{x}$$
 en 0.

13/
$$\left(\cos\left(\frac{1}{\sqrt{x}}\right)\right)^x \text{ en } +\infty.$$

Exercice 3

Soient f et g deux fonctions définies sur \mathbb{R} et a un réel ou $+\infty$ ou $-\infty$.

- 1/ Démontrer que $\lim_{x\to a}(f(x)-g(x))=0\Longleftrightarrow e^{f(x)}\underset{x\to a}{\sim}e^{g(x)}.$
- 2/ Donner un exemple de fonctions f et g pour lesquelles $e^{f(x)} \sim e^{g(x)}$ mais $f(x) \sim g(x)$.

Exercice 4 Soit
$$f$$
 la fonction définie par $f: x \longmapsto \begin{cases} x \cos\left(\frac{1}{x}\right) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$.

f est-elle continue en 0?

Exercice 5

Pour chaque fonction ci-dessous, déterminer l'ensemble de définition, de continuité, puis si la fonction est prolongeable par continuité:

$$1/ f: x \longmapsto \frac{x^2 \ln(x)}{\sin(x)}.$$

$$2/ f: x \longmapsto \sqrt{x} \sin\left(\frac{1}{x}\right) - \frac{1}{1-x}.$$

$$3/ f: x \longmapsto (x-1)\ln(x-1).$$

Exercice 6

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ continue telle que $\lim_{x \to -\infty} f(x) = -1$ et $\lim_{x \to +\infty} f(x) = 1$.

- 1/ Montrer qu'il existe deux réels a et b tels que f(a) < 0 et f(b) > 0.
- 2/ En déduire que f s'annule sur \mathbb{R} .

Exercice 7

Soit $f:[0;1] \longmapsto [0;1]$ continue.

- 1/ Posons $g: x \mapsto f(x) x$. Quel est le signe de g(0)? de g(1)?
- 2/ Montrer que f possède un unique point fixe, c'est-à-dire qu'il existe $c \in \mathbb{R}$, f(c) = c (appliquer le théorème des valeurs intermédiaires à q).

Exercice 8

Démontrer que l'équation $e^{-x^2} = x$ admet une unique solution sur $]0, +\infty[$.

Exercice 9

Soit $n \in \mathbb{N}$ et (E_n) l'équation $x + \ln(x) = n$.

- 1/ Montrer que $f: x \longmapsto x + \ln(x)$ est une bijection strictement croissante de \mathbb{R}_+^* sur \mathbb{R} . En déduire que (E_n) a une unique solution x_n sur \mathbb{R}_+^* .
- 2/ Déterminer le sens de variations de la suite $(x_n)_{n\in\mathbb{N}}$ (comparer $f(x_n)$ et $f(x_{n+1})$ et conclure).
- 3/ Démontrer que $x_n \xrightarrow[n \to +\infty]{} +\infty$ (utiliser $f^{-1}(n)$).
- 4/ Montrer que $\forall n \in \mathbb{N}, \ x_n \left(1 + \frac{\ln(x_n)}{x_n}\right) = n.$ En déduire un équivalent de x_n .

Exercice 10

Soit $f: \mathbb{R} \longrightarrow \mathbb{R}$ continue et périodique de période T > 0.

- 1/ Montrer que f est bornée sur [0,T].
- 2/ En déduire que f est bornée sur \mathbb{R} .

Limites et continuité HKBL