Exercices supplémentaires : séries numériques

Exercice 1

Déterminer la nature (convergence, divergence) des séries :

$$1/\sum_{n\geqslant 0} \left(\frac{a+1}{a}\right)^{n}, \ a\in\mathbb{R}^{*} \qquad 2/\sum_{n\geqslant 1} \frac{1}{\ln(n^{2}+1)} \qquad 3/\sum_{n\geqslant 1} \frac{1}{(n^{2}+1)\sin(\frac{1}{\sqrt{n}})}$$

$$4/\sum_{n\geqslant 0} \frac{a^{n}}{1+a^{2n}}, \ a\in\mathbb{R} \qquad 5/\sum_{n\geqslant 1} \frac{1}{n\sqrt[n]{n}} \qquad 6/\sum_{n\geqslant 0} \ln\left(\cos\left(\frac{1}{2^{n}}\right)\right) \qquad 7/\sum_{n\geqslant 0} e^{-\sqrt{n}}$$

$$8/\sum_{n\geqslant 1} \frac{n}{2^{n}+n} \qquad 9/\sum_{n\geqslant 0} \frac{(n!)^{3}}{(3n)!} \qquad 10/\sum_{n\geqslant 0} \frac{(n!)^{2}}{2^{n^{2}}}$$

Exercice 2

Exercice 2 Existence et calcul des sommes suivantes : $1/\sum_{n=0}^{+\infty} \frac{1}{n^2 + 3n + 2}$ $2/\sum_{n=0}^{+\infty} \frac{1}{n!2^n}$.

Exercice 3

Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ trois suites réelles telles que : $\forall n\in\mathbb{N}, u_n\leqslant v_n\leqslant w_n$. On suppose que $\sum u_n$ et $\sum w_n$ convergent. Démontrer que $\sum v_n$ converge.

Exercice 4

Soient $(u_n)_{n\in\mathbb{N}}$ une suite à termes réels positifs et soit, pour tout $n\in\mathbb{N}$, $v_n=\frac{u_n}{1+u^2}$

- 1/ Montrer que si $\sum u_n$ converge, alors $\sum v_n$ converge.
- 2/ Montrer que si $\sum u_n$ diverge et si $(u_n)_n$ est majorée, alors $\sum v_n$ diverge.
- 3/ Donner un exemple où $\sum u_n$ diverge et $\sum v_n$ converge.

Posons, $\forall n \in \mathbb{N}^*$, $u_n = \frac{(-1)^n}{n}$ et $S_n = \sum_{k=0}^n u_k$.

- 1/ Démontrer que les suites $(S_{2n})_{n\in\mathbb{N}^*}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes et conclure quant à la nature de la série $\sum_{n>1} \frac{(-1)^n}{n}$.
- 2/ a) Justifier que $\forall n \in \mathbb{N}^*$, $S_{2n} = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{k} \sum_{k=0}^{n-1} \frac{1}{2p+1}$, mais aussi que $S_{2n} = \sum_{k=1}^{2n} \frac{1}{k} 2 \sum_{k=0}^{n-1} \frac{1}{2p+1}$.
 - **b)** En déduire que $\forall n \in \mathbb{N}^*$, $S_{2n} = -\sum_{k=0}^{2n} \frac{1}{k}$.
 - c) A l'aide d'un changement d'indice puis d'une somme de Riemann, en déduire la limite de S_{2n} puis $\sum^{+\infty} \frac{(-1)^n}{n}.$

Exercice 6

Soient $(u_n)_{n\in\mathbb{N}}$ une suite à termes réels strictement positifs et soit, pour tout $n\in\mathbb{N},\,S_n=\sum u_k$

- 1/ On suppose que la série $\sum u_n$ converge. Démontrer que la série $\sum \frac{u_n}{S_n}$ converge.
- 2/ On suppose que la série $\sum u_n$ diverge.
 - a) Démontrer que $\forall n \in \mathbb{N}^*, \frac{u_n}{S_n^2} \leqslant \frac{1}{S_{n-1}} \frac{1}{S_n}$.

b) En déduire la convergence de la série $\sum \frac{u_n}{S_n^2}$.

Exercice 7

Soit $x \in [0, 1[$ et $n \in \mathbb{N}$.

- 1/ Le but est de calculer $\sum_{n=0}^{+\infty} nx^n$:
 - a) Déterminer, pour $k \in [1, n]$, la fonction dérivée de $f: x \mapsto x^k$ puis de $g: x \mapsto \sum_{k=0}^n x^k$ sur [0, 1].
 - **b)** Rappeler l'expression de $\sum_{k=0}^{n} x^k$ et déduire de la question a) que $\sum_{k=1}^{n} kx^{k-1} = \frac{nx^{n+1} (n+1)x^n + 1}{(1-x)^2}$.
 - c) En déduire que $\sum_{n=0}^{+\infty} nx^n = \frac{x}{(1-x)^2}$, pour $x \in [0,1[$.
- 2/ Le but est de calculer $\sum_{n=1}^{+\infty} \frac{x^n}{n}$:
 - a) Montrer que $\int_0^x t^k dt = \frac{x^{k+1}}{k+1}$.
 - **b)** En déduire que $\sum_{k=0}^{n} \frac{x^{k+1}}{k+1} = -\ln(1-x) \int_{0}^{x} \frac{t^{n+1}}{1-t} dt$.
 - c) $\forall t \in [0, x]$, encadrer t^{n+1} puis l'intégrale de la question précédente. En déduire que cette intégrale tend vers 0 si n tend vers $+\infty$, pour $x \in [0, 1[$.
 - d) En déduire que $\sum_{n=1}^{+\infty} \frac{x^n}{n} = -\ln(1-x)$, pour $x \in [0,1[$.