Exercices supplémentaires : l'espace vectoriel \mathbb{R}^n

Exercice 1

Soient $F = \{(x, y) \in \mathbb{R}^2 \mid 3x - y = 0\}$ et $F = \{(x, y) \in \mathbb{R}^2 \mid y = 0\}$. Démontrer que E et F sont des sev de \mathbb{R}^2 .

Exercice 2

Soit $E = \{(x, y, z) \in \mathbb{R}^3 \mid 2y + z = 0\}$ et $F = \{(x, y, z) \in \mathbb{R}^3 \mid x - y + z = 0 \text{ et } 4x - 2y - z = 0\}$. Démontrer que E et F sont des sev de \mathbb{R}^3 .

Exercice 3

Soient $F = \{(x, y, z) \in \mathbb{R}^3 \mid xyz = 0\}$ et $G = \{(2x - 3y, x, -x + 3y) \mid x, y \in \mathbb{R}\}$. F et G sont-ils des sev de \mathbb{R}^3 ?

Exercice 4

Soient $A = \{(x, y, z, t) \in \mathbb{R}^4 \mid x = 2z\}, B = \{(x, x - y, y, x + 2y) \mid x, y \in \mathbb{R}\}, C = \{(a, b, c, d) \in \mathbb{R}^4 \mid a + b = 1\} \text{ et } D = \{(a, b, c, d) \in \mathbb{R}^4 \mid a + b = c\}.$

1/A, B, C et D sont-ils des sev de \mathbb{R}^4 ?

2/ Déterminer $B \cap D$.

Exercice 5

Soit F = Vect((1, -3)) un sev de \mathbb{R}^2 .

Déterminer la ou les équations cartésiennes de F.

Exercice 6

Soit $F = \text{Vect}((3, 2, 1), (-1, -2, -3) \text{ un sev de } \mathbb{R}^3$.

Déterminer la ou les équations cartésiennes de F.

Exercice 7

Soit F = Vect((0, 1, 2)) un sev de \mathbb{R}^3 .

Déterminer la ou les équations cartésiennes de F.

Exercice 8

Soient F et G deux sev de \mathbb{R}^n avec $F \not\subset G$ et $G \not\subset F$.

Démontrer que $F \cup G$ n'est pas un sev de \mathbb{R}^n .

Exercice 9

Soient $x_1 = (1,0), x_2 = (-1,3)$ et $x_3 = (-5,-4)$ des vecteurs de \mathbb{R}^2 .

1/ La famille (x_1) est-elle une famille libre de \mathbb{R}^2 ?

 $\mathbf{2}/$ La famille (x_1,x_2) est-elle une famille libre de \mathbb{R}^2 ?

3/ La famille (x_1, x_2, x_3) est-elle une famille libre de \mathbb{R}^2 ?

Exercice 10

Soient $u_1 = (1, 1, 0)$ et $u_2 = (0, 1, 1)$ des vecteurs de \mathbb{R}^3 .

Démontrer que la famille (u_1, u_2) est une famille libre de \mathbb{R}^3 et la compléter en une base de \mathbb{R}^3 .

Exercice 11

Soient $u_1 = (1,0), u_2 = (0,1)$ et $u_3 = (1,1)$ des vecteurs de \mathbb{R}^2 .

Démontrer que la famille (u_1, u_2, u_3) est une famille génératrice de \mathbb{R}^2 et en extraire une base de \mathbb{R}^2 .

Exercice 12

Soient $u_1 = (1, 0, 2), u_2 = (0, 2, 0), u_3 = (0, 0, 2)$ et $u_4 = (1, 1, 1)$ des vecteurs de \mathbb{R}^3 .

1/ La famille (u_1, u_2, u_3, u_4) est-elle une famille génératrice de \mathbb{R}^3 ? Est-elle une base de \mathbb{R}^3 ?

2/ La famille (u_1, u_2, u_3) est-elle une famille génératrice de \mathbb{R}^3 ? Est-elle une base de \mathbb{R}^3 ?

Exercice 13

Soient $u_1 = (1, 1, 0, 1), u_2 = (0, 1, 1, 0), u_3 = (0, 0, 3, -1)$ et $u_4 = (1, 0, 2, 0)$ des vecteurs de \mathbb{R}^4 . La famille (u_1, u_2, u_3, u_4) est-elle une famille génératrice de \mathbb{R}^4 ? Est-elle une base de \mathbb{R}^4 ?

Exercice 14

Soient $x_1 = (1, 1, 0), x_2 = (1, 0, 0), x_3 = (0, 1, 0), x_4 = (3, 2, 1)$ et $x_5 = (-9, -4, -5)$ des vecteurs de \mathbb{R}^3 .

Les familles $(x_1, x_2, x_3), (x_1, x_3, x_4)$ et (x_1, x_4, x_5) sont-elles libres?

Exercice 15

Soient $m \in \mathbb{R}$ et u = (1, m, 2), v = (-1, 8, m) et w = (1, 2, 1) des vecteurs de \mathbb{R}^3 .

Déterminer les valeurs du réels m, s'il en existe, pour lesquelles la famille (u, v, w) est liée.

Exercice 16

Soient $u_1 = (1, 0, 0), u_2 = (2, 5, 1), u_3 = (1, 1, 1)$ et $u_4 = (1, -1, 1)$ des vecteurs de \mathbb{R}^3 .

Démontrer que la famille (u_1, u_2, u_3, u_4) est une famille génératrice de \mathbb{R}^3 et en extraire une base de \mathbb{R}^3 .

Exercice 17

Soient $u_1 = (1, 0, 1, 0)$ et $u_2 = (0, 1, 0, 0)$ des vecteurs de \mathbb{R}^4 .

Démontrer que la famille (u_1, u_2) est une famille libre de \mathbb{R}^4 et la compléter en une base de \mathbb{R}^4 .

Exercice 18

Soient u = (2, 1, 0), v = (1, 2, 4) et w = (-3, -2, -1) trois vecteurs de \mathbb{R}^3 .

- 1/ Démontrer que $\mathscr{B} = (u, v, w)$ est une base de \mathbb{R}^3 .
- 2/ Soit t = (4,5,6). Déterminer les coordonnées de t dans la base \mathscr{B} .

Exercice 19

Soit $F = \text{Vect}(u_1, u_2, u_3)$ avec $u_1 = (2, 3, -1), u_2 = (0, 5, 3)$ et $u_3 = (-4, 9, 11)$.

Déterminer le rang de la famille (u_1, u_2, u_3) , puis une base de F et sa dimension.

Exercice 20

Soit $F = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - y + z = 0 \text{ et } y - 3z = 0\}.$

Démontrer que F est un sev de \mathbb{R}^3 et en donner une base et sa dimension.

Exercice 21

Déterminer une base et la dimension du sous-espace vectoriel de \mathbb{R}^3 des solutions du système :

$$\mathbf{1}/(S): \begin{cases} x - 3y - z &= 0\\ 2x - 5y + 2z &= 0\\ 3x - 7y + 5z &= 0 \end{cases}$$

$$\mathbf{2}/(S): \left\{ \begin{array}{rcl} 2x - z & = & 0\\ y + z & = & 0 \end{array} \right.$$

$$3/(S): x+2y = 0$$

Exercice 22

Soient u = (1, 2, 3), v = (3, 2, 1), w = (1, 4, 7) et t = (-1, 6, 9) des vecteurs de \mathbb{R}^3 .

- $\mathbf{1}/\ \, \mathrm{Montrer}$ que (u,v) est une base de $\mathrm{Vect}(u,v).$
- 2/w et t appartiennent-ils à Vect(u,v)? Si oui, donner leurs coordonnées dans la base (u,v).
- 3/ Démontrer que (u,v,t) est une base de \mathbb{R}^3 . Quelles sont les coordonnées de e=(1,0,0) dans cette base ?

Exercice 23

Soit F l'ensemble des quadruplets de \mathbb{R}^4 dont la somme des deux premiers coefficients est égale à la somme des deux derniers.

- 1/ Démontrer que F est un sev de \mathbb{R}^4 .
- 2/ Déterminer une base de F.

Exercice 24

Soient u = (1, 2, -1), v = (3, -1, 2), w = (1, 3, -1) et t = (2, -2, 3) des vecteurs de \mathbb{R}^3 . Déterminer $\text{Vect}(u, v) \cap \text{Vect}(w, t)$.

Exercice 25

Soient $a, b, c \in \mathbb{R}$ et $E = \{(x, y, z) \in \mathbb{R}^3 \mid x = by + cz\}.$

- $\mathbf{1}/\$ Montrer que E est un sev de \mathbb{R}^3 et donner sa dimension.
- 2/ On note F et G les sev de \mathbb{R}^3 définis par $F=\{(x,y,z)\in\mathbb{R}^3\mid y=ax+cz\}$ et $E=\{(x,y,z)\in\mathbb{R}^3\mid z=ax+by\}.$

Démontrer que si $2abc + ab + bc + ca \neq 1$, alors $E \cap F \cap G = \{0_{\mathbb{R}^3}\}$.

- **3**/ On cherche à quelles conditions on peut avoir $E \subset F \cap G$:
 - a) Démontrer que $E \subset F \cap G \iff E = F = G$.
 - b) Démontrer que $E \subset F \cap G \iff a = b = c = -1$.