P. Sup. B/L Le 28 février 2025

CONCOURS BLANC N° 2

Épreuve de mathématiques

Durée: 4 heures

L'énoncé comporte 3 pages

Aucun instrument de calcul n'est autorisé

Exercice 1

Toutes les variables aléatoires rencontrées dans cet exercice sont supposées définies sur un même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ que l'on ne cherchera pas à déterminer.

1. Soit f la fonction qui, à tout réel x, associe

$$f(x) = \begin{cases} xe^{-\frac{x^2}{2}} & \text{si } x \geqslant 0\\ 0 & \text{sinon} \end{cases}.$$

- a) Montrer que f peut être considérée comme une densité d'une certaine variable aléatoire X.
- b) Rappeler les valeurs de l'espérance, de la variance et du moment d'ordre 2 d'une variable aléatoire Y suivant la loi normale centrée réduite.
 - c) En déduire, par des considérations de parité, que X a une espérance et que : $\mathbb{E}(X) = \sqrt{\frac{\pi}{2}}$.
- 2. On note F_X la fonction de répartition de X. Déterminer $F_X(x)$ selon que x < 0 ou $x \ge 0$.
- 3. On pose $Z = X^2$ et on note F_Z sa fonction de répartition. Déterminer $F_Z(x)$ dans chacun des cas x < 0 et $x \ge 0$, et montrer que Z suit une loi exponentielle dont on précisera le paramètre.
- 4. Pour tout entier naturel n non nul, on pose $Y_n = \frac{X}{\sqrt{n}}$ et on note G_n la fonction de répartition de Y_n .
 - a) Montrer que l'on a : $G_n(x) = \begin{cases} 1 e^{-\frac{nx^2}{2}} & \text{si } x \geqslant 0 \\ 0 & \text{si } x < 0 \end{cases}$.
 - b) Déterminer, pour tout $x \in \mathbb{R}$, $\lim_{n \to +\infty} G_n(x)$, qu'on notera G(x).
- c) La fonction G est-elle la fonction de répartition d'une variable aléatoire à densité ? d'une variable discrète ? Si oui, laquelle ?
 - d) Montrer que, pour tout $\varepsilon > 0$, on a : $\lim_{n \to +\infty} \mathbb{P}(|Y_n| > \varepsilon) = 0$.
- 5. On considère une suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires mutuellement indépendantes, et suivant toutes la même loi que X.

Pour tout entier naturel n non nul, on pose $M_n = \min(X_1, \dots, X_n)$.

Exprimer, pour tout réel x, $\mathbb{P}(M_n > x)$ à l'aide de la fonction F_X , puis en déduire que M_n suit la même loi que la variable Y_n introduite en 4.

Exercice 2

Soit a un réel. On considère la fonction I_a définie par : $I_a(x) = \int_x^{+\infty} e^{2a(x-t)-t^2} dt$.

On considère également l'intégrale J_a définie par : $J_a = \int_0^{+\infty} e^{-2at-t^2} dt$.

Partie I

- 1. a) Montrer, en justifiant rigoureusement, la relation suivante : $e^{-2at-t^2} = o\left(\frac{1}{t^2}\right)$ lorsque t tend vers $+\infty$.
 - b. En déduire que l'intégrale J_a est convergente.
- 2. En déduire que la fonction I_a est définie sur \mathbb{R} .
- 3. a) Justifier que $\lim_{x\to+\infty}\int_x^{+\infty}e^{-2at-t^2}\,\mathrm{d}t=0.$
 - b) Dans cette question uniquement, on suppose que a est positif.

Montrer que, pour tout $x \in \mathbb{R}$, $I_a(x) \leqslant \int_x^{+\infty} e^{-t^2} dt$.

- c) Déduire des deux questions précédentes que, quelle que soit la valeur du réel a, on a : $\lim_{x\to +\infty}I_a(x)=0.$
- 4. On considère la fonction F_a définie sur \mathbb{R} par : $\forall x \in \mathbb{R}$, $F_a(x) = \int_0^x e^{-2at-t^2} dt$.
 - a) Montrer que F_a est dérivable sur \mathbb{R} et, pour tout réel x, déterminer $F_a'(x)$.
 - b) Montrer que, pour tout réel x, $I_a(x) = e^{2ax} (J_a F_a(x))$.
 - c) En déduire que la fonction I_a est dérivable sur $\mathbb R$ et qu'elle vérifie :

$$\forall x \in \mathbb{R}, \ I_a'(x) = 2aI_a(x) - e^{-x^2}.$$

- 5. a) On cherche les fonctions f dérivables sur \mathbb{R} et vérifiant : $\forall x \in \mathbb{R}$, f'(x) = 2af(x) (*). Si f est une solution, on pose $h(x) = f(x)e^{-2ax}$. Montrer que h' est nulle et en déduire l'ensemble des solutions de (*).
 - b) En déduire l'ensemble des fonctions dérivables sur $\mathbb R$ et vérifiant :

$$\forall x \in \mathbb{R}, \ f'(x) = 2af(x) - e^{-x^2} \quad (\star \star).$$

Partie II

On considère une variable aléatoire X de loi normale d'espérance -a et de variance $\frac{1}{2}$.

- 8. a) Rappeler l'expression d'une densité de X.
 - b) Tracer l'allure de sa courbe représentative dans le cas a=2.
- 9. Soit x un réel.
 - a) Exprimer $\mathbb{P}(X \ge x)$ sous forme d'intégrale.
 - b) En déduire que : $I_a(x) = \sqrt{\pi} e^{2ax+a^2} \mathbb{P}(X \geqslant x)$.
- 10. Soit Z une variable aléatoire de loi normale centrée réduite. Déterminer, en fonction de a, deux réels α et β tels que $\alpha Z + \beta$ suive la même loi que X.

Exercice 3 Racines carrées d'une matrice carrée

Dans tout l'exercice, n désigne un entier naturel non nul et I_n la matrice identité de $\mathcal{M}_n(\mathbb{R})$. Soit A une matrice de $\mathcal{M}_n(\mathbb{R})$ fixée. On cherche s'il existe des matrices $M \in \mathcal{M}_n(\mathbb{R})$ telles que $M^2 = A$ et, si c'est le cas, à décrire l'ensemble des solutions de cette équation d'inconnue M.

- 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$. On suppose qu'il existe $M \in \mathcal{M}_n(\mathbb{R})$ telle que $M^2 = A$.
 - a) Montrer que : AM = MA.
 - b) Montrer que A est inversible si, et seulement si, M est inversible.
- 2. On considère dans cette question seulement la matrice $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.
 - a) Calculer A^2 . La matrice A est-elle diagonalisable ?
 - b) Montrer que si $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ est solution de $M^2 = A$ alors a = d et b = -c.
 - c) Montrer alors que $M^2=A$ admet deux solutions que l'on explicitera.
- 3. On considère dans cette question seulement la matrice $A = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ et on suppose qu'il existe une matrice $M \in \mathcal{M}_3(\mathbb{R})$ vérifiant $M^2 = A$. On note f l'endomorphisme de \mathbb{R}^3 représenté par M dans la base canonique.
 - a) A est-elle diagonalisable?
 - b) Montrer que $M^4 \neq 0$ et que $M^6 = 0$. On note alors $p = \min\{k \in \mathbb{N}^* \mid M^p = 0\}$.

 \hookrightarrow

- c) Montrer qu'il existe un vecteur non nul u de \mathbb{R}^3 tel que $(u, f(u), f^2(u), \dots, f^{p-1}(u))$ forme une famille libre de \mathbb{R}^3 . (On pourra appliquer f^{p-1} à une combinaison linéaire nulle des vecteurs de la famille considérée.)
 - d) Conclure.
- 4. On considère dans cette question seulement $A = I_n + N$ avec $N \in \mathcal{M}_n(\mathbb{R})$ telle que $N^4 = 0$.
 - a) Donner le développement limité à l'ordre 3, au voisinage de 0, de $\sqrt{1+t}$. On note $\sqrt{1+t}=a_0+a_1t+a_2t^2+a_3t^3+o(t^3)$ (V_0) ce développement limité.
 - b) Montrer qu'il existe un polynôme Q de $\mathbb{R}[x]$ tel que :

$$\forall x \in \mathbb{R}, \ 1 + x = (a_0 + a_1 x + a_2 x^2 + a_3 x^3)^2 + x^4 Q(x)$$

- c) Déduire de la question précédente une matrice $M \in \mathcal{M}_n(\mathbb{R})$ telle que $M^2 = A$.
- 5. Soient $M \in \mathcal{M}_n(\mathbb{R})$ telle que $M^2 = I_n$ et f l'endomorphisme de \mathbb{R}^n représenté par M dans la base canonique.
- a) Soit $\lambda \in \mathbb{R}$ une valeur propre de M et X un vecteur propre associé, exprimer M^2X en fonction de X et λ , puis en déduire les valeurs propres possibles de M.
 - b) Montrer que : $\mathbb{R}^n = \text{Ker}(f \text{Id}) \oplus \text{Ker}(f + \text{Id})$.
 - c) En déduire que M est diagonalisable.
- d) Conclure que l'ensemble des solutions de l'équation $M^2 = I_n$ est l'ensemble des matrices semblables aux matrices diagonales dont tous les éléments diagonaux sont égaux à 1 ou -1, c'est-à-dire l'ensemble des matrices semblables aux matrices de la forme

$$\begin{pmatrix} \varepsilon_1 & 0 & \cdots & 0 \\ 0 & \ddots & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \varepsilon_n \end{pmatrix} \quad \text{où } \forall i \in [1, n], \ \varepsilon_i \in \{-1, 1\}.$$

- 6. On suppose dans cette question seulement que $A \in \mathcal{M}_n(\mathbb{R})$ vérifie $Sp(A) = \{\lambda_1, \dots, \lambda_n\}$ où les réels λ_i vérifient $\lambda_1 < \lambda_2 < \dots < \lambda_n$.
- a) Justifier qu'il existe une matrice D diagonale, que l'on précisera, et une matrice P inversible telles que $A = PDP^{-1}$.
 - b) Soit $M \in \mathcal{M}_n(\mathbb{R})$ et $N = P^{-1}MP$. Montrer que $M^2 = A$ si, et seulement si, $N^2 = D$.
 - c) À l'aide de la question 1. a), montrer qu'alors N est une matrice diagonale.
- d) L'équation $M^2=A$ a-t-elle des solutions si A admet au moins une valeur propre strictement négative?
- e) Décrire l'ensemble des solutions de $M^2=A$ dans le cas où toutes les valeurs propres de A sont positives.